$F$-manifolds and integrable systems of hydrodynamic type
Archivum mathematicum, Tome 47 (2011) no. 3, pp. 163-180
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate the role of Hertling-Manin condition on the structure constants of an associative commutative algebra in the theory of integrable systems of hydrodynamic type. In such a framework we introduce the notion of $F$-manifold with compatible connection generalizing a structure introduced by Manin.
Classification :
35Q35, 53B05, 53D45
Keywords: F-manifolds; Frobenius manifolds; integrable systems; PDEs of hydrodynamic type
Keywords: F-manifolds; Frobenius manifolds; integrable systems; PDEs of hydrodynamic type
@article{ARM_2011__47_3_a0,
author = {Lorenzoni, Paolo and Pedroni, Marco and Raimondo, Andrea},
title = {$F$-manifolds and integrable systems of hydrodynamic type},
journal = {Archivum mathematicum},
pages = {163--180},
publisher = {mathdoc},
volume = {47},
number = {3},
year = {2011},
mrnumber = {2852379},
zbl = {1249.35267},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a0/}
}
TY - JOUR AU - Lorenzoni, Paolo AU - Pedroni, Marco AU - Raimondo, Andrea TI - $F$-manifolds and integrable systems of hydrodynamic type JO - Archivum mathematicum PY - 2011 SP - 163 EP - 180 VL - 47 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a0/ LA - en ID - ARM_2011__47_3_a0 ER -
Lorenzoni, Paolo; Pedroni, Marco; Raimondo, Andrea. $F$-manifolds and integrable systems of hydrodynamic type. Archivum mathematicum, Tome 47 (2011) no. 3, pp. 163-180. http://geodesic.mathdoc.fr/item/ARM_2011__47_3_a0/