Natural extension of a congruence of a lattice to its lattice of convex sublattices
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 133-138.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $L$ be a lattice. In this paper, corresponding to a given congruence relation $\Theta $ of $L$, a congruence relation $\Psi _\Theta $ on $CS(L)$ is defined and it is proved that 1. $CS(L/\Theta )$ is isomorphic to $CS(L)/\Psi _\Theta $; 2. $L/\Theta $ and $CS(L)/\Psi _\Theta $ are in the same equational class; 3. if $\Theta $ is representable in $L$, then so is $\Psi _\Theta $ in $CS(L)$.
Classification : 06B10, 06B20
Keywords: lattice of convex sublattices of a lattice; congruence relation; representable congruence relation
@article{ARM_2011__47_2_a6,
     author = {Bhatta, S. Parameshwara and Ramananda, H. S.},
     title = {Natural extension of a congruence of a lattice to its lattice of convex sublattices},
     journal = {Archivum mathematicum},
     pages = {133--138},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2011},
     mrnumber = {2813539},
     zbl = {1249.06007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a6/}
}
TY  - JOUR
AU  - Bhatta, S. Parameshwara
AU  - Ramananda, H. S.
TI  - Natural extension of a congruence of a lattice to its lattice of convex sublattices
JO  - Archivum mathematicum
PY  - 2011
SP  - 133
EP  - 138
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a6/
LA  - en
ID  - ARM_2011__47_2_a6
ER  - 
%0 Journal Article
%A Bhatta, S. Parameshwara
%A Ramananda, H. S.
%T Natural extension of a congruence of a lattice to its lattice of convex sublattices
%J Archivum mathematicum
%D 2011
%P 133-138
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a6/
%G en
%F ARM_2011__47_2_a6
Bhatta, S. Parameshwara; Ramananda, H. S. Natural extension of a congruence of a lattice to its lattice of convex sublattices. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 133-138. http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a6/