A new characterization of $r$-stable hypersurfaces in space forms
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 119-131.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study the $r$-stability of closed hypersurfaces with constant $r$-th mean curvature in Riemannian manifolds of constant sectional curvature. In this setting, we obtain a characterization of the $r$-stable ones through of the analysis of the first eigenvalue of an operator naturally attached to the $r$-th mean curvature.
Classification : 53B30, 53C42, 53C50, 53Z05, 83C99
Keywords: space forms; $r$-th mean curvatures; $r$-stability
@article{ARM_2011__47_2_a5,
     author = {de Lima, H. F. and Vel\'asquez, M. A.},
     title = {A new characterization of $r$-stable hypersurfaces in space forms},
     journal = {Archivum mathematicum},
     pages = {119--131},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2011},
     mrnumber = {2813538},
     zbl = {1249.53081},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a5/}
}
TY  - JOUR
AU  - de Lima, H. F.
AU  - Velásquez, M. A.
TI  - A new characterization of $r$-stable hypersurfaces in space forms
JO  - Archivum mathematicum
PY  - 2011
SP  - 119
EP  - 131
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a5/
LA  - en
ID  - ARM_2011__47_2_a5
ER  - 
%0 Journal Article
%A de Lima, H. F.
%A Velásquez, M. A.
%T A new characterization of $r$-stable hypersurfaces in space forms
%J Archivum mathematicum
%D 2011
%P 119-131
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a5/
%G en
%F ARM_2011__47_2_a5
de Lima, H. F.; Velásquez, M. A. A new characterization of $r$-stable hypersurfaces in space forms. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 119-131. http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a5/