Criterion of $p$-criticality for one term $2n$-order difference operators
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 99-109
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We investigate the criticality of the one term $2n$-order difference operators $l(y)_k = \Delta ^n (r_k \Delta ^n y_k)$. We explicitly determine the recessive and the dominant system of solutions of the equation $l(y)_k = 0$. Using their structure we prove a criticality criterion.
Classification :
39A10, 39A21, 39A70, 47B25
Keywords: one term difference operator; recessive system of solutions; $p$-critical operator; sub/supercritical operator
Keywords: one term difference operator; recessive system of solutions; $p$-critical operator; sub/supercritical operator
@article{ARM_2011__47_2_a3,
author = {Hasil, Petr},
title = {Criterion of $p$-criticality for one term $2n$-order difference operators},
journal = {Archivum mathematicum},
pages = {99--109},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {2011},
mrnumber = {2813536},
zbl = {1249.39001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a3/}
}
Hasil, Petr. Criterion of $p$-criticality for one term $2n$-order difference operators. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 99-109. http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a3/