Criterion of $p$-criticality for one term $2n$-order difference operators
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 99-109.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We investigate the criticality of the one term $2n$-order difference operators $l(y)_k = \Delta ^n (r_k \Delta ^n y_k)$. We explicitly determine the recessive and the dominant system of solutions of the equation $l(y)_k = 0$. Using their structure we prove a criticality criterion.
Classification : 39A10, 39A21, 39A70, 47B25
Keywords: one term difference operator; recessive system of solutions; $p$-critical operator; sub/supercritical operator
@article{ARM_2011__47_2_a3,
     author = {Hasil, Petr},
     title = {Criterion of $p$-criticality for one term $2n$-order difference operators},
     journal = {Archivum mathematicum},
     pages = {99--109},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {2011},
     mrnumber = {2813536},
     zbl = {1249.39001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a3/}
}
TY  - JOUR
AU  - Hasil, Petr
TI  - Criterion of $p$-criticality for one term $2n$-order difference operators
JO  - Archivum mathematicum
PY  - 2011
SP  - 99
EP  - 109
VL  - 47
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a3/
LA  - en
ID  - ARM_2011__47_2_a3
ER  - 
%0 Journal Article
%A Hasil, Petr
%T Criterion of $p$-criticality for one term $2n$-order difference operators
%J Archivum mathematicum
%D 2011
%P 99-109
%V 47
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a3/
%G en
%F ARM_2011__47_2_a3
Hasil, Petr. Criterion of $p$-criticality for one term $2n$-order difference operators. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 99-109. http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a3/