The first eigenvalue of spacelike submanifolds in indefinite space form $R^{n+p}_p$
Archivum mathematicum, Tome 47 (2011) no. 2, pp. 77-82
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we prove that the first eigenvalue of a complete spacelike submanifold in $R^{n+p}_p$ with the bounded Gauss map must be zero.
@article{ARM_2011__47_2_a0,
author = {Han, Yingbo and Feng, Shuxiang},
title = {The first eigenvalue of spacelike submanifolds in indefinite space form $R^{n+p}_p$},
journal = {Archivum mathematicum},
pages = {77--82},
publisher = {mathdoc},
volume = {47},
number = {2},
year = {2011},
mrnumber = {2813533},
zbl = {1249.53076},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a0/}
}
TY - JOUR
AU - Han, Yingbo
AU - Feng, Shuxiang
TI - The first eigenvalue of spacelike submanifolds in indefinite space form $R^{n+p}_p$
JO - Archivum mathematicum
PY - 2011
SP - 77
EP - 82
VL - 47
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a0/
LA - en
ID - ARM_2011__47_2_a0
ER -
Han, Yingbo; Feng, Shuxiang. The first eigenvalue of spacelike submanifolds in indefinite space form $R^{n+p}_p$. Archivum mathematicum, Tome 47 (2011) no. 2, pp. 77-82. http://geodesic.mathdoc.fr/item/ARM_2011__47_2_a0/