Stratonovich-Weyl correspondence for discrete series representations
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 51-68
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak{g}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak{g}$.
Classification :
22E46, 32M15, 46E22, 81S10
Keywords: Stratonovich-Weyl correspondence; Berezin quantization; Berezin transform; semisimple Lie group; coadjoint orbits; unitary representation; Hermitian symmetric space of the noncompact type; discrete series representation; reproducing kernel Hilbert space; coherent states
Keywords: Stratonovich-Weyl correspondence; Berezin quantization; Berezin transform; semisimple Lie group; coadjoint orbits; unitary representation; Hermitian symmetric space of the noncompact type; discrete series representation; reproducing kernel Hilbert space; coherent states
@article{ARM_2011__47_1_a4,
author = {Cahen, Benjamin},
title = {Stratonovich-Weyl correspondence for discrete series representations},
journal = {Archivum mathematicum},
pages = {51--68},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2011},
mrnumber = {2813546},
zbl = {1240.22011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a4/}
}
Cahen, Benjamin. Stratonovich-Weyl correspondence for discrete series representations. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 51-68. http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a4/