$\pi $-mappings in $ls$-Ponomarev-systems
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 35-49.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We use the $ls$-Ponomarev-system $(f, M, X, \lbrace \mathcal{P}_{\lambda ,n}\rbrace )$, where $M$ is a locally separable metric space, to give a consistent method to construct a $\pi $-mapping (compact mapping) with covering-properties from a locally separable metric space $M$ onto a space $X$. As applications of these results, we systematically get characterizations of certain $\pi $-images (compact images) of locally separable metric spaces.
Classification : 54E40, 54E99
Keywords: sequence-covering; compact-covering; pseudo-sequence-covering; sequentially-quotient; $\pi $-mapping; $ls$-Ponomarev-system; double point-star cover
@article{ARM_2011__47_1_a3,
     author = {Van Dung, Nguyen},
     title = {$\pi $-mappings in $ls${-Ponomarev-systems}},
     journal = {Archivum mathematicum},
     pages = {35--49},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2011},
     mrnumber = {2813545},
     zbl = {1240.54101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a3/}
}
TY  - JOUR
AU  - Van Dung, Nguyen
TI  - $\pi $-mappings in $ls$-Ponomarev-systems
JO  - Archivum mathematicum
PY  - 2011
SP  - 35
EP  - 49
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a3/
LA  - en
ID  - ARM_2011__47_1_a3
ER  - 
%0 Journal Article
%A Van Dung, Nguyen
%T $\pi $-mappings in $ls$-Ponomarev-systems
%J Archivum mathematicum
%D 2011
%P 35-49
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a3/
%G en
%F ARM_2011__47_1_a3
Van Dung, Nguyen. $\pi $-mappings in $ls$-Ponomarev-systems. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a3/