$\pi $-mappings in $ls$-Ponomarev-systems
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 35-49
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We use the $ls$-Ponomarev-system $(f, M, X, \lbrace \mathcal{P}_{\lambda ,n}\rbrace )$, where $M$ is a locally separable metric space, to give a consistent method to construct a $\pi $-mapping (compact mapping) with covering-properties from a locally separable metric space $M$ onto a space $X$. As applications of these results, we systematically get characterizations of certain $\pi $-images (compact images) of locally separable metric spaces.
Classification :
54E40, 54E99
Keywords: sequence-covering; compact-covering; pseudo-sequence-covering; sequentially-quotient; $\pi $-mapping; $ls$-Ponomarev-system; double point-star cover
Keywords: sequence-covering; compact-covering; pseudo-sequence-covering; sequentially-quotient; $\pi $-mapping; $ls$-Ponomarev-system; double point-star cover
@article{ARM_2011__47_1_a3,
author = {Van Dung, Nguyen},
title = {$\pi $-mappings in $ls${-Ponomarev-systems}},
journal = {Archivum mathematicum},
pages = {35--49},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2011},
mrnumber = {2813545},
zbl = {1240.54101},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a3/}
}
Van Dung, Nguyen. $\pi $-mappings in $ls$-Ponomarev-systems. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 35-49. http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a3/