Tangent Dirac structures of higher order
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 17-22.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $L$ be an almost Dirac structure on a manifold $M$. In [2] Theodore James Courant defines the tangent lifting of $L$ on $TM$ and proves that: If $L$ is integrable then the tangent lift is also integrable. In this paper, we generalize this lifting to tangent bundle of higher order.
Classification : 53C15, 53C75, 53D05
Keywords: Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformations
@article{ARM_2011__47_1_a1,
     author = {Kouotchop Wamba, P. M. and Ntyam, A. and Wouafo Kamga, J.},
     title = {Tangent {Dirac} structures of higher order},
     journal = {Archivum mathematicum},
     pages = {17--22},
     publisher = {mathdoc},
     volume = {47},
     number = {1},
     year = {2011},
     mrnumber = {2813543},
     zbl = {1240.53058},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a1/}
}
TY  - JOUR
AU  - Kouotchop Wamba, P. M.
AU  - Ntyam, A.
AU  - Wouafo Kamga, J.
TI  - Tangent Dirac structures of higher order
JO  - Archivum mathematicum
PY  - 2011
SP  - 17
EP  - 22
VL  - 47
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a1/
LA  - en
ID  - ARM_2011__47_1_a1
ER  - 
%0 Journal Article
%A Kouotchop Wamba, P. M.
%A Ntyam, A.
%A Wouafo Kamga, J.
%T Tangent Dirac structures of higher order
%J Archivum mathematicum
%D 2011
%P 17-22
%V 47
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a1/
%G en
%F ARM_2011__47_1_a1
Kouotchop Wamba, P. M.; Ntyam, A.; Wouafo Kamga, J. Tangent Dirac structures of higher order. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a1/