Tangent Dirac structures of higher order
Archivum mathematicum, Tome 47 (2011) no. 1, pp. 17-22
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $L$ be an almost Dirac structure on a manifold $M$. In [2] Theodore James Courant defines the tangent lifting of $L$ on $TM$ and proves that:
If $L$ is integrable then the tangent lift is also integrable.
In this paper, we generalize this lifting to tangent bundle of higher order.
Classification :
53C15, 53C75, 53D05
Keywords: Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformations
Keywords: Dirac structure; almost Dirac structure; tangent functor of higher order; natural transformations
@article{ARM_2011__47_1_a1,
author = {Kouotchop Wamba, P. M. and Ntyam, A. and Wouafo Kamga, J.},
title = {Tangent {Dirac} structures of higher order},
journal = {Archivum mathematicum},
pages = {17--22},
publisher = {mathdoc},
volume = {47},
number = {1},
year = {2011},
mrnumber = {2813543},
zbl = {1240.53058},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a1/}
}
Kouotchop Wamba, P. M.; Ntyam, A.; Wouafo Kamga, J. Tangent Dirac structures of higher order. Archivum mathematicum, Tome 47 (2011) no. 1, pp. 17-22. http://geodesic.mathdoc.fr/item/ARM_2011__47_1_a1/