Fischer decompositions in Euclidean and Hermitean Clifford analysis
Archivum mathematicum, Tome 46 (2010) no. 5, pp. 301-321
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Euclidean Clifford analysis is a higher dimensional function theory studying so–called monogenic functions, i.e. null solutions of the rotation invariant, vector valued, first order Dirac operator $\underline{\partial }$. In the more recent branch Hermitean Clifford analysis, this rotational invariance has been broken by introducing a complex structure $J$ on Euclidean space and a corresponding second Dirac operator $\underline{\partial }_J$, leading to the system of equations $\underline{\partial } f = 0 = \underline{\partial }_J f$ expressing so-called Hermitean monogenicity. The invariance of this system is reduced to the unitary group U($n$). In this paper we decompose the spaces of homogeneous monogenic polynomials into U($n$)-irrucibles involving homogeneous Hermitean monogenic polynomials and we carry out a dimensional analysis of those spaces. Meanwhile an overview is given of so-called Fischer decompositions in Euclidean and Hermitean Clifford analysis.
@article{ARM_2010__46_5_a1,
author = {Brackx, Fred and de Schepper, Hennie and Sou\v{c}ek, Vladim{\'\i}r},
title = {Fischer decompositions in {Euclidean} and {Hermitean} {Clifford} analysis},
journal = {Archivum mathematicum},
pages = {301--321},
publisher = {mathdoc},
volume = {46},
number = {5},
year = {2010},
mrnumber = {2753985},
zbl = {1249.30135},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010__46_5_a1/}
}
TY - JOUR AU - Brackx, Fred AU - de Schepper, Hennie AU - Souček, Vladimír TI - Fischer decompositions in Euclidean and Hermitean Clifford analysis JO - Archivum mathematicum PY - 2010 SP - 301 EP - 321 VL - 46 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2010__46_5_a1/ LA - en ID - ARM_2010__46_5_a1 ER -
Brackx, Fred; de Schepper, Hennie; Souček, Vladimír. Fischer decompositions in Euclidean and Hermitean Clifford analysis. Archivum mathematicum, Tome 46 (2010) no. 5, pp. 301-321. http://geodesic.mathdoc.fr/item/ARM_2010__46_5_a1/