On $a$-Kasch spaces
Archivum mathematicum, Tome 46 (2010) no. 4, pp. 251-262
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
If $X$ is a Tychonoff space, $C(X)$ its ring of real-valued continuous functions. In this paper, we study non-essential ideals in $C(X)$. Let $a$ be a infinite cardinal, then $X$ is called $a$-Kasch (resp. $\bar{a}$-Kasch) space if given any ideal (resp. $z$-ideal) $I$ with $\operatorname{gen}\,(I)$ then $I$ is a non-essential ideal. We show that $X$ is an $\aleph _0$-Kasch space if and only if $X$ is an almost $P$-space and $X$ is an $\aleph _1$-Kasch space if and only if $X$ is a pseudocompact and almost $P$-space. Let $C_F(X)$ denote the socle of $C(X)$. For a topological space $X$ with only a finite number of isolated points, we show that $X$ is an $a$-Kasch space if and only if $\frac{C(X)}{C_F(X)}$ is an $a$-Kasch ring.
Classification :
13A30, 16S60, 46J10, 54C40
Keywords: $a$-Kasch space; almost $P$-space; basically disconnected; $C$-embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; $P$-space; pseudocompact space; Stone-Čech compactification; socle; realcompactification
Keywords: $a$-Kasch space; almost $P$-space; basically disconnected; $C$-embedded; essential ideal; extremally disconnected; fixed ideal; free ideal; Kasch ring; $P$-space; pseudocompact space; Stone-Čech compactification; socle; realcompactification
@article{ARM_2010__46_4_a2,
author = {Estaji, Ali Akbar and Henriksen, Melvin},
title = {On $a${-Kasch} spaces},
journal = {Archivum mathematicum},
pages = {251--262},
publisher = {mathdoc},
volume = {46},
number = {4},
year = {2010},
mrnumber = {2754064},
zbl = {1240.54064},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010__46_4_a2/}
}
Estaji, Ali Akbar; Henriksen, Melvin. On $a$-Kasch spaces. Archivum mathematicum, Tome 46 (2010) no. 4, pp. 251-262. http://geodesic.mathdoc.fr/item/ARM_2010__46_4_a2/