A note on fusion Banach frames
Archivum mathematicum, Tome 46 (2010) no. 3, pp. 203-209
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For a fusion Banach frame $(\lbrace G_n, v_n\rbrace , S)$ for a Banach space $E$, if $(\lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is a fusion Banach frame for $E^*$, then $(\lbrace G_n, v_n\rbrace , S; \lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is called a fusion bi-Banach frame for $E$. It is proved that if $E$ has an atomic decomposition, then $E$ also has a fusion bi-Banach frame. Also, a sufficient condition for the existence of a fusion bi-Banach frame is given. Finally, a characterization of fusion bi-Banach frames is given.
Classification :
42A38, 42C15, 46B15
Keywords: atomic decompositions; fusion Banach frames; fusion bi-Banach frames
Keywords: atomic decompositions; fusion Banach frames; fusion bi-Banach frames
@article{ARM_2010__46_3_a3,
author = {Kaushik, S. K. and Kumar, Varinder},
title = {A note on fusion {Banach} frames},
journal = {Archivum mathematicum},
pages = {203--209},
publisher = {mathdoc},
volume = {46},
number = {3},
year = {2010},
mrnumber = {2735906},
zbl = {1240.42146},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2010__46_3_a3/}
}
Kaushik, S. K.; Kumar, Varinder. A note on fusion Banach frames. Archivum mathematicum, Tome 46 (2010) no. 3, pp. 203-209. http://geodesic.mathdoc.fr/item/ARM_2010__46_3_a3/