A note on fusion Banach frames
Archivum mathematicum, Tome 46 (2010) no. 3, pp. 203-209.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For a fusion Banach frame $(\lbrace G_n, v_n\rbrace , S)$ for a Banach space $E$, if $(\lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is a fusion Banach frame for $E^*$, then $(\lbrace G_n, v_n\rbrace , S; \lbrace v_n^*(E^*), v_n^*\rbrace ,T)$ is called a fusion bi-Banach frame for $E$. It is proved that if $E$ has an atomic decomposition, then $E$ also has a fusion bi-Banach frame. Also, a sufficient condition for the existence of a fusion bi-Banach frame is given. Finally, a characterization of fusion bi-Banach frames is given.
Classification : 42A38, 42C15, 46B15
Keywords: atomic decompositions; fusion Banach frames; fusion bi-Banach frames
@article{ARM_2010__46_3_a3,
     author = {Kaushik, S. K. and Kumar, Varinder},
     title = {A note on fusion {Banach} frames},
     journal = {Archivum mathematicum},
     pages = {203--209},
     publisher = {mathdoc},
     volume = {46},
     number = {3},
     year = {2010},
     mrnumber = {2735906},
     zbl = {1240.42146},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010__46_3_a3/}
}
TY  - JOUR
AU  - Kaushik, S. K.
AU  - Kumar, Varinder
TI  - A note on fusion Banach frames
JO  - Archivum mathematicum
PY  - 2010
SP  - 203
EP  - 209
VL  - 46
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2010__46_3_a3/
LA  - en
ID  - ARM_2010__46_3_a3
ER  - 
%0 Journal Article
%A Kaushik, S. K.
%A Kumar, Varinder
%T A note on fusion Banach frames
%J Archivum mathematicum
%D 2010
%P 203-209
%V 46
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2010__46_3_a3/
%G en
%F ARM_2010__46_3_a3
Kaushik, S. K.; Kumar, Varinder. A note on fusion Banach frames. Archivum mathematicum, Tome 46 (2010) no. 3, pp. 203-209. http://geodesic.mathdoc.fr/item/ARM_2010__46_3_a3/