Asymptotic properties of solutions of nonautonomous difference equations
Archivum mathematicum, Tome 46 (2010) no. 1, pp. 1-11.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Asymptotic properties of solutions of difference equation of the form \[ \Delta ^m x_n=a_n\varphi _n(x_{\sigma (n)})+b_n \] are studied. Conditions under which every (every bounded) solution of the equation $\Delta ^m y_n=b_n$ is asymptotically equivalent to some solution of the above equation are obtained. Moreover, the conditions under which every polynomial sequence of degree less than $m$ is asymptotically equivalent to some solution of the equation and every solution is asymptotically polynomial are obtained. The consequences of the existence of asymptotically polynomial solution are also studied.
Classification : 39A10
Keywords: difference equation; asymptotic behavior; asymptotically polynomial solution
@article{ARM_2010__46_1_a0,
     author = {Migda, Janusz},
     title = {Asymptotic properties of solutions of nonautonomous difference equations},
     journal = {Archivum mathematicum},
     pages = {1--11},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2010},
     mrnumber = {2644450},
     zbl = {1240.39009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2010__46_1_a0/}
}
TY  - JOUR
AU  - Migda, Janusz
TI  - Asymptotic properties of solutions of nonautonomous difference equations
JO  - Archivum mathematicum
PY  - 2010
SP  - 1
EP  - 11
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2010__46_1_a0/
LA  - en
ID  - ARM_2010__46_1_a0
ER  - 
%0 Journal Article
%A Migda, Janusz
%T Asymptotic properties of solutions of nonautonomous difference equations
%J Archivum mathematicum
%D 2010
%P 1-11
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2010__46_1_a0/
%G en
%F ARM_2010__46_1_a0
Migda, Janusz. Asymptotic properties of solutions of nonautonomous difference equations. Archivum mathematicum, Tome 46 (2010) no. 1, pp. 1-11. http://geodesic.mathdoc.fr/item/ARM_2010__46_1_a0/