Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects
Archivum mathematicum, Tome 45 (2009) no. 4, pp. 301-324
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We shall give a survey of classical examples, together with algebraic methods to deal with those structures: graded algebra, cohomologies, cohomology operations. The corresponding geometric structures will be described(e.g., Lie algebroids), with particular emphasis on supergeometry, odd supersymplectic structures and their classification. Finally, we shall explain how BV-structures appear in Quantum Field Theory, as a version of functional integral quantization.
Classification :
16-02, 16E40, 16E45, 17B56, 17B70, 53D17, 53D55, 58A50, 58D29, 81T70
Keywords: supergeometry; odd symplectic manifolds; functional integral quantization; Graded Lie Algebras; Hochschild cohomology
Keywords: supergeometry; odd symplectic manifolds; functional integral quantization; Graded Lie Algebras; Hochschild cohomology
@article{ARM_2009__45_4_a6,
author = {Roger, Claude},
title = {Gerstenhaber and {Batalin-Vilkovisky} algebras; algebraic, geometric, and physical aspects},
journal = {Archivum mathematicum},
pages = {301--324},
publisher = {mathdoc},
volume = {45},
number = {4},
year = {2009},
mrnumber = {2591684},
zbl = {1212.58004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009__45_4_a6/}
}
Roger, Claude. Gerstenhaber and Batalin-Vilkovisky algebras; algebraic, geometric, and physical aspects. Archivum mathematicum, Tome 45 (2009) no. 4, pp. 301-324. http://geodesic.mathdoc.fr/item/ARM_2009__45_4_a6/