On the Lipschitz operator algebras
Archivum mathematicum, Tome 45 (2009) no. 3, pp. 213-222.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an $\alpha $-Lipschitz operator from a compact metric space into a Banach space $A$ is defined and characterized in a natural way in the sence that $F:K\rightarrow A$ is a $\alpha $-Lipschitz operator if and only if for each $\sigma \in X^*$ the mapping $\sigma \circ F$ is a $\alpha $-Lipschitz function. The Lipschitz operators algebras $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are isometrically isomorphic to $L^{\alpha }(K)\check{\otimes }A$ and $l^{\alpha }(K)\check{\otimes }A$ respectively. Also we study homomorphisms on the $L^\alpha _A(X,B)$.
Classification : 46H25, 46J10, 47B48
Keywords: Lipschitz algebras; amenability; homomorphism
@article{ARM_2009__45_3_a5,
     author = {Ebadian, A. and Shokri, A. A.},
     title = {On the {Lipschitz} operator algebras},
     journal = {Archivum mathematicum},
     pages = {213--222},
     publisher = {mathdoc},
     volume = {45},
     number = {3},
     year = {2009},
     mrnumber = {2591677},
     zbl = {1211.47074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009__45_3_a5/}
}
TY  - JOUR
AU  - Ebadian, A.
AU  - Shokri, A. A.
TI  - On the Lipschitz operator algebras
JO  - Archivum mathematicum
PY  - 2009
SP  - 213
EP  - 222
VL  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2009__45_3_a5/
LA  - en
ID  - ARM_2009__45_3_a5
ER  - 
%0 Journal Article
%A Ebadian, A.
%A Shokri, A. A.
%T On the Lipschitz operator algebras
%J Archivum mathematicum
%D 2009
%P 213-222
%V 45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2009__45_3_a5/
%G en
%F ARM_2009__45_3_a5
Ebadian, A.; Shokri, A. A. On the Lipschitz operator algebras. Archivum mathematicum, Tome 45 (2009) no. 3, pp. 213-222. http://geodesic.mathdoc.fr/item/ARM_2009__45_3_a5/