Quenching time of some nonlinear wave equations
Archivum mathematicum, Tome 45 (2009) no. 2, pp. 115-124
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we consider the following initial-boundary value problem
\[ {\left\rbrace \begin{array}{ll} u_{tt}(x,t)=\varepsilon Lu(x,t)+f\big (u(x,t)\big )\quad \mbox {in}\quad \Omega \times (0,T)\,,\\ u(x,t)=0 \quad \mbox {on}\quad \partial \Omega \times (0,T)\,, \\ u(x,0)=0 \quad \mbox {in}\quad \Omega \,, \\ u_t(x,0)=0 \quad \mbox {in}\quad \Omega \,, \end{array}\right.}\]
where $\Omega $ is a bounded domain in $\mathbb{R}^N$ with smooth boundary $\partial \Omega $, $L$ is an elliptic operator, $\varepsilon $ is a positive parameter, $f(s)$ is a positive, increasing, convex function for $s\in (-\infty ,b)$, $\lim _{s\rightarrow b}f(s)=\infty $ and $\int _0^b\frac{ds}{f(s)}\infty $ with $b=\operatorname{const}>0$. Under some assumptions, we show that the solution of the above problem quenches in a finite time and its quenching time goes to that of the solution of the following differential equation
\[ {\left\rbrace \begin{array}{ll} \alpha ^{\prime \prime }(t)=f(\alpha (t))\,,\quad t>0\,, \\ \alpha (0)=0\,,\quad \alpha ^{\prime }(0)=0\,, \end{array}\right.}\]
as $\varepsilon $ goes to zero. We also show that the above result remains valid if the domain $\Omega $ is large enough and its size is taken as parameter. Finally, we give some numerical results to illustrate our analysis.
Classification :
35B40, 35B50, 35L20, 35L70, 65M06
Keywords: nonlinear wave equations; quenching; convergence; numerical quenching time
Keywords: nonlinear wave equations; quenching; convergence; numerical quenching time
@article{ARM_2009__45_2_a4,
author = {N{\textquoteright}gohisse, Firmin K. and Boni, Th\'eodore K.},
title = {Quenching time of some nonlinear wave equations},
journal = {Archivum mathematicum},
pages = {115--124},
publisher = {mathdoc},
volume = {45},
number = {2},
year = {2009},
mrnumber = {2591668},
zbl = {1212.35016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009__45_2_a4/}
}
N’gohisse, Firmin K.; Boni, Théodore K. Quenching time of some nonlinear wave equations. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 115-124. http://geodesic.mathdoc.fr/item/ARM_2009__45_2_a4/