On metrics of positive Ricci curvature conformal to $M\times \mathbf{R}^m$
Archivum mathematicum, Tome 45 (2009) no. 2, pp. 105-113
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(M^n,g)$ be a closed Riemannian manifold and $g_E$ the Euclidean metric. We show that for $m>1$, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a positive Einstein manifold. Moreover, $\left(M^n \times \mathbf{R}^m, (g+g_E)\right)$ is not conformal to a Riemannian manifold of positive Ricci curvature, through a radial, integrable, smooth function, $\varphi \colon \mathbf{R^m} \rightarrow \mathbf{R^+}$, for $m>1$. These results are motivated by some recent questions on Yamabe constants.
Classification :
53A30, 53C21, 53C25
Keywords: conformally Einstein manifolds; positive Ricci curvature
Keywords: conformally Einstein manifolds; positive Ricci curvature
@article{ARM_2009__45_2_a3,
author = {Ruiz, Juan Miguel},
title = {On metrics of positive {Ricci} curvature conformal to $M\times \mathbf{R}^m$},
journal = {Archivum mathematicum},
pages = {105--113},
publisher = {mathdoc},
volume = {45},
number = {2},
year = {2009},
mrnumber = {2591667},
zbl = {1212.53015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009__45_2_a3/}
}
Ruiz, Juan Miguel. On metrics of positive Ricci curvature conformal to $M\times \mathbf{R}^m$. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 105-113. http://geodesic.mathdoc.fr/item/ARM_2009__45_2_a3/