A generalization of Steenrod’s approximation theorem
Archivum mathematicum, Tome 45 (2009) no. 2, pp. 95-104.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we aim for a generalization of the Steenrod Approximation Theorem from [16, Section 6.7], concerning a smoothing procedure for sections in smooth locally trivial bundles. The generalization is that we consider locally trivial smooth bundles with a possibly infinite-dimensional typical fibre. The main result states that a continuous section in a smooth locally trivial bundles can always be smoothed out in a very controlled way (in terms of the graph topology on spaces of continuous functions), preserving the section on regions where it is already smooth.
Classification : 57R10, 57R12, 58B05
Keywords: infinite-dimensional manifold; infinite-dimensional smooth bundle; smoothing of continuous sections; density of smooth in continuous sections; topology on spaces of continuous functions
@article{ARM_2009__45_2_a2,
     author = {Wockel, Christoph},
     title = {A generalization of {Steenrod{\textquoteright}s} approximation theorem},
     journal = {Archivum mathematicum},
     pages = {95--104},
     publisher = {mathdoc},
     volume = {45},
     number = {2},
     year = {2009},
     mrnumber = {2591666},
     zbl = {1212.58005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009__45_2_a2/}
}
TY  - JOUR
AU  - Wockel, Christoph
TI  - A generalization of Steenrod’s approximation theorem
JO  - Archivum mathematicum
PY  - 2009
SP  - 95
EP  - 104
VL  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2009__45_2_a2/
LA  - en
ID  - ARM_2009__45_2_a2
ER  - 
%0 Journal Article
%A Wockel, Christoph
%T A generalization of Steenrod’s approximation theorem
%J Archivum mathematicum
%D 2009
%P 95-104
%V 45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2009__45_2_a2/
%G en
%F ARM_2009__45_2_a2
Wockel, Christoph. A generalization of Steenrod’s approximation theorem. Archivum mathematicum, Tome 45 (2009) no. 2, pp. 95-104. http://geodesic.mathdoc.fr/item/ARM_2009__45_2_a2/