Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action
Archivum mathematicum, Tome 45 (2009) no. 1, pp. 75-78.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We show that $\pi _1(\operatorname{Symp}(M, \omega ))$ can be nontrivial for $M$ that does not admit any symplectic circle action.
Classification : 53C15, 53D35, 57S05
Keywords: symplectomorphism; circle action
@article{ARM_2009__45_1_a6,
     author = {K\k{e}dra, Jarek},
     title = {Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action},
     journal = {Archivum mathematicum},
     pages = {75--78},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2009},
     mrnumber = {2591663},
     zbl = {1212.57016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a6/}
}
TY  - JOUR
AU  - Kędra, Jarek
TI  - Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action
JO  - Archivum mathematicum
PY  - 2009
SP  - 75
EP  - 78
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a6/
LA  - en
ID  - ARM_2009__45_1_a6
ER  - 
%0 Journal Article
%A Kędra, Jarek
%T Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action
%J Archivum mathematicum
%D 2009
%P 75-78
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a6/
%G en
%F ARM_2009__45_1_a6
Kędra, Jarek. Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action. Archivum mathematicum, Tome 45 (2009) no. 1, pp. 75-78. http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a6/