On rings all of whose modules are retractable
Archivum mathematicum, Tome 45 (2009) no. 1, pp. 71-74
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a ring. A right $R$-module $M$ is said to be retractable if $\mathbb{T}{Hom}_R(M,N)\ne 0$ whenever $N$ is a non-zero submodule of $M$. The goal of this article is to investigate a ring $R$ for which every right R-module is retractable. Such a ring will be called right mod-retractable. We proved that
$(1)$ The ring $\prod _{i \in \mathcal{I}} R_i$ is right mod-retractable if and only if each $R_i$ is a right mod-retractable ring for each $i\in \mathcal{I}$, where $\mathcal{I}$ is an arbitrary finite set.
$(2)$ If $R[x]$ is a mod-retractable ring then $R$ is a mod-retractable ring.
Classification :
16D10, 16D50, 16D70, 16D80, 16D90, 16S36
Keywords: retractable module; Morita invariant property
Keywords: retractable module; Morita invariant property
@article{ARM_2009__45_1_a5,
author = {Ecevit, \c{S}ule and Ko\c{s}an, Muhammet Tamer},
title = {On rings all of whose modules are retractable},
journal = {Archivum mathematicum},
pages = {71--74},
publisher = {mathdoc},
volume = {45},
number = {1},
year = {2009},
mrnumber = {2591662},
zbl = {1203.16006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a5/}
}
Ecevit, Şule; Koşan, Muhammet Tamer. On rings all of whose modules are retractable. Archivum mathematicum, Tome 45 (2009) no. 1, pp. 71-74. http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a5/