On rings all of whose modules are retractable
Archivum mathematicum, Tome 45 (2009) no. 1, pp. 71-74.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $R$ be a ring. A right $R$-module $M$ is said to be retractable if $\mathbb{T}{Hom}_R(M,N)\ne 0$ whenever $N$ is a non-zero submodule of $M$. The goal of this article is to investigate a ring $R$ for which every right R-module is retractable. Such a ring will be called right mod-retractable. We proved that $(1)$ The ring $\prod _{i \in \mathcal{I}} R_i$ is right mod-retractable if and only if each $R_i$ is a right mod-retractable ring for each $i\in \mathcal{I}$, where $\mathcal{I}$ is an arbitrary finite set. $(2)$ If $R[x]$ is a mod-retractable ring then $R$ is a mod-retractable ring.
Classification : 16D10, 16D50, 16D70, 16D80, 16D90, 16S36
Keywords: retractable module; Morita invariant property
@article{ARM_2009__45_1_a5,
     author = {Ecevit, \c{S}ule and Ko\c{s}an, Muhammet Tamer},
     title = {On rings all of whose modules are retractable},
     journal = {Archivum mathematicum},
     pages = {71--74},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2009},
     mrnumber = {2591662},
     zbl = {1203.16006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a5/}
}
TY  - JOUR
AU  - Ecevit, Şule
AU  - Koşan, Muhammet Tamer
TI  - On rings all of whose modules are retractable
JO  - Archivum mathematicum
PY  - 2009
SP  - 71
EP  - 74
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a5/
LA  - en
ID  - ARM_2009__45_1_a5
ER  - 
%0 Journal Article
%A Ecevit, Şule
%A Koşan, Muhammet Tamer
%T On rings all of whose modules are retractable
%J Archivum mathematicum
%D 2009
%P 71-74
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a5/
%G en
%F ARM_2009__45_1_a5
Ecevit, Şule; Koşan, Muhammet Tamer. On rings all of whose modules are retractable. Archivum mathematicum, Tome 45 (2009) no. 1, pp. 71-74. http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a5/