A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator
Archivum mathematicum, Tome 45 (2009) no. 1, pp. 37-46.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Making use of the Dziok-Srivastava operator, we introduce a new class of complex valued harmonic functions which are orientation preserving and univalent in the open unit disc and are related to uniformly convex functions. We investigate the coefficient bounds, distortion inequalities and extreme points for this generalized class of functions.
Classification : 30C45, 30C50, 33C05, 33C20
Keywords: harmonic univalent starlike functions; Dziok-Srivastava operator; distortion bounds; extreme points; uniformly convex functions
@article{ARM_2009__45_1_a2,
     author = {Murugusundaramoorthy, G. and Vijaya, K. and Raina, R. K.},
     title = {A subclass of harmonic functions with varying arguments defined by {Dziok-Srivastava} operator},
     journal = {Archivum mathematicum},
     pages = {37--46},
     publisher = {mathdoc},
     volume = {45},
     number = {1},
     year = {2009},
     mrnumber = {2591659},
     zbl = {1212.30052},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a2/}
}
TY  - JOUR
AU  - Murugusundaramoorthy, G.
AU  - Vijaya, K.
AU  - Raina, R. K.
TI  - A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator
JO  - Archivum mathematicum
PY  - 2009
SP  - 37
EP  - 46
VL  - 45
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a2/
LA  - en
ID  - ARM_2009__45_1_a2
ER  - 
%0 Journal Article
%A Murugusundaramoorthy, G.
%A Vijaya, K.
%A Raina, R. K.
%T A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator
%J Archivum mathematicum
%D 2009
%P 37-46
%V 45
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a2/
%G en
%F ARM_2009__45_1_a2
Murugusundaramoorthy, G.; Vijaya, K.; Raina, R. K. A subclass of harmonic functions with varying arguments defined by Dziok-Srivastava operator. Archivum mathematicum, Tome 45 (2009) no. 1, pp. 37-46. http://geodesic.mathdoc.fr/item/ARM_2009__45_1_a2/