$GL_n$-Invariant tensors and graphs
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 449-463.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We describe a correspondence between $\mbox {GL}_n$-invariant tensors and graphs. We then show how this correspondence accommodates various types of symmetries and orientations.
Classification : 13A50, 15A72, 20G05
Keywords: invariant tensor; general linear group; graph
@article{ARM_2008__44_5_a8,
     author = {Markl, Martin},
     title = {$GL_n${-Invariant} tensors and graphs},
     journal = {Archivum mathematicum},
     pages = {449--463},
     publisher = {mathdoc},
     volume = {44},
     number = {5},
     year = {2008},
     mrnumber = {2501578},
     zbl = {1212.15051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a8/}
}
TY  - JOUR
AU  - Markl, Martin
TI  - $GL_n$-Invariant tensors and graphs
JO  - Archivum mathematicum
PY  - 2008
SP  - 449
EP  - 463
VL  - 44
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a8/
LA  - en
ID  - ARM_2008__44_5_a8
ER  - 
%0 Journal Article
%A Markl, Martin
%T $GL_n$-Invariant tensors and graphs
%J Archivum mathematicum
%D 2008
%P 449-463
%V 44
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a8/
%G en
%F ARM_2008__44_5_a8
Markl, Martin. $GL_n$-Invariant tensors and graphs. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 449-463. http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a8/