Moduli spaces of Lie algebroid connections
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 403-418
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We shall prove that the moduli space of irreducible Lie algebroid connections over a connected compact manifold has a natural structure of a locally Hausdorff Hilbert manifold. This generalizes some known results for the moduli space of simple semi-connections on a complex vector bundle over a compact complex manifold.
@article{ARM_2008__44_5_a6,
author = {K\v{r}i\v{z}ka, Libor},
title = {Moduli spaces of {Lie} algebroid connections},
journal = {Archivum mathematicum},
pages = {403--418},
publisher = {mathdoc},
volume = {44},
number = {5},
year = {2008},
mrnumber = {2501576},
zbl = {1212.32009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a6/}
}
Křižka, Libor. Moduli spaces of Lie algebroid connections. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 403-418. http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a6/