Classification of principal connections naturally induced on $W^2PE$
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 535-547
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a vector bundle $E\rightarrow M$ and the principal bundle $PE$ of frames of $E$. Let $K$ be a principal connection on $PE$ and let $\Lambda $ be a linear connection on $M$. We classify all principal connections on $W^2PE= P^2M\times _M J^2PE$ naturally given by $K$ and $\Lambda $.
Classification :
53C05, 53C10, 58A20, 58A32
Keywords: natural bundle; gauge-natural bundle; natural operator; principal bundle; principal connection
Keywords: natural bundle; gauge-natural bundle; natural operator; principal bundle; principal connection
@article{ARM_2008__44_5_a13,
author = {Vondra, Jan},
title = {Classification of principal connections naturally induced on $W^2PE$},
journal = {Archivum mathematicum},
pages = {535--547},
publisher = {mathdoc},
volume = {44},
number = {5},
year = {2008},
mrnumber = {2501583},
zbl = {1212.53040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a13/}
}
Vondra, Jan. Classification of principal connections naturally induced on $W^2PE$. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 535-547. http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a13/