A generalization of Thom’s transversality theorem
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 523-533.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove a generalization of Thom’s transversality theorem. It gives conditions under which the jet map $f_*|_Y\colon Y\subseteq J^r(D,M)\rightarrow J^r(D,N)$ is generically (for $f\colon M\rightarrow N$) transverse to a submanifold $Z\subseteq J^r(D,N)$. We apply this to study transversality properties of a restriction of a fixed map $g\colon M\rightarrow P$ to the preimage $(j^sf)^{-1}(A)$ of a submanifold $A\subseteq J^s(M,N)$ in terms of transversality properties of the original map $f$. Our main result is that for a reasonable class of submanifolds $A$ and a generic map $f$ the restriction $g|_{(j^sf)^{-1}(A)}$ is also generic. We also present an example of $A$ where the theorem fails.
Classification : 57R35, 57R45, 58A20
Keywords: transversality; residual; generic; restriction; fibrewise singularity
@article{ARM_2008__44_5_a12,
     author = {Vok\v{r}{\'\i}nek, Luk\'a\v{s}},
     title = {A generalization of {Thom{\textquoteright}s} transversality theorem},
     journal = {Archivum mathematicum},
     pages = {523--533},
     publisher = {mathdoc},
     volume = {44},
     number = {5},
     year = {2008},
     mrnumber = {2501582},
     zbl = {1212.57010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a12/}
}
TY  - JOUR
AU  - Vokřínek, Lukáš
TI  - A generalization of Thom’s transversality theorem
JO  - Archivum mathematicum
PY  - 2008
SP  - 523
EP  - 533
VL  - 44
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a12/
LA  - en
ID  - ARM_2008__44_5_a12
ER  - 
%0 Journal Article
%A Vokřínek, Lukáš
%T A generalization of Thom’s transversality theorem
%J Archivum mathematicum
%D 2008
%P 523-533
%V 44
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a12/
%G en
%F ARM_2008__44_5_a12
Vokřínek, Lukáš. A generalization of Thom’s transversality theorem. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 523-533. http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a12/