A generalization of Thom’s transversality theorem
Archivum mathematicum, Tome 44 (2008) no. 5, pp. 523-533
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We prove a generalization of Thom’s transversality theorem. It gives conditions under which the jet map $f_*|_Y\colon Y\subseteq J^r(D,M)\rightarrow J^r(D,N)$ is generically (for $f\colon M\rightarrow N$) transverse to a submanifold $Z\subseteq J^r(D,N)$. We apply this to study transversality properties of a restriction of a fixed map $g\colon M\rightarrow P$ to the preimage $(j^sf)^{-1}(A)$ of a submanifold $A\subseteq J^s(M,N)$ in terms of transversality properties of the original map $f$. Our main result is that for a reasonable class of submanifolds $A$ and a generic map $f$ the restriction $g|_{(j^sf)^{-1}(A)}$ is also generic. We also present an example of $A$ where the theorem fails.
Classification :
57R35, 57R45, 58A20
Keywords: transversality; residual; generic; restriction; fibrewise singularity
Keywords: transversality; residual; generic; restriction; fibrewise singularity
@article{ARM_2008__44_5_a12,
author = {Vok\v{r}{\'\i}nek, Luk\'a\v{s}},
title = {A generalization of {Thom{\textquoteright}s} transversality theorem},
journal = {Archivum mathematicum},
pages = {523--533},
publisher = {mathdoc},
volume = {44},
number = {5},
year = {2008},
mrnumber = {2501582},
zbl = {1212.57010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a12/}
}
Vokřínek, Lukáš. A generalization of Thom’s transversality theorem. Archivum mathematicum, Tome 44 (2008) no. 5, pp. 523-533. http://geodesic.mathdoc.fr/item/ARM_2008__44_5_a12/