Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces
Archivum mathematicum, Tome 44 (2008) no. 4, pp. 285-293.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The weak convergence of the iterative generated by $J(u_{n+1}-u_{n})= \tau (Fu_{n}-Ju_{n})$, $n \ge 0$, $\big (0 \tau =\min \big \lbrace 1,\frac{1}{\lambda }\big \rbrace \big )$ to a coincidence point of the mappings $F,J\colon V \rightarrow V^{\star }$ is investigated, where $V$ is a real reflexive Banach space and $V^{\star }$ its dual (assuming that $V^{\star }$ is strictly convex). The basic assumptions are that $J$ is the duality mapping, $J-F$ is demiclosed at $0$, coercive, potential and bounded and that there exists a non-negative real valued function $r(u,\eta )$ such that \[ \sup _{u,\eta \in V} \lbrace r(u,\eta )\rbrace =\lambda \infty \] \[ r(u,\eta )\Vert J(u- \eta ) \Vert _{V^{\star }}\ge \Vert (J -F)(u)-(J-F)(\eta ) \Vert _{V^{\star }}\,, \quad \forall ~ u,\eta \in V\,. \] Furthermore, the case when $V$ is a Hilbert space is given. An application of our results to filtration problems with limit gradient in a domain with semipermeable boundary is also provided.
Classification : 47H10, 54H25
Keywords: iteration; coincidence point; demiclosed mappings; pseudo-monotone mappings; bounded Lipschitz continuous coercive mappings; filtration problems
@article{ARM_2008__44_4_a3,
     author = {Saddeek, A. M. and Ahmed, Sayed A.},
     title = {Iterative solution of nonlinear equations of the pseudo-monotone type in {Banach} spaces},
     journal = {Archivum mathematicum},
     pages = {285--293},
     publisher = {mathdoc},
     volume = {44},
     number = {4},
     year = {2008},
     mrnumber = {2493425},
     zbl = {1212.47088},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_4_a3/}
}
TY  - JOUR
AU  - Saddeek, A. M.
AU  - Ahmed, Sayed A.
TI  - Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces
JO  - Archivum mathematicum
PY  - 2008
SP  - 285
EP  - 293
VL  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2008__44_4_a3/
LA  - en
ID  - ARM_2008__44_4_a3
ER  - 
%0 Journal Article
%A Saddeek, A. M.
%A Ahmed, Sayed A.
%T Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces
%J Archivum mathematicum
%D 2008
%P 285-293
%V 44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2008__44_4_a3/
%G en
%F ARM_2008__44_4_a3
Saddeek, A. M.; Ahmed, Sayed A. Iterative solution of nonlinear equations of the pseudo-monotone type in Banach spaces. Archivum mathematicum, Tome 44 (2008) no. 4, pp. 285-293. http://geodesic.mathdoc.fr/item/ARM_2008__44_4_a3/