Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings
Archivum mathematicum, Tome 44 (2008) no. 3, pp. 173-183
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be an arbitrary commutative ring with identity, $\operatorname{gl}(n,R)$ the general linear Lie algebra over $R$, $d(n,R)$ the diagonal subalgebra of $\operatorname{gl}(n,R)$. In case 2 is a unit of $R$, all subalgebras of $\operatorname{gl}(n,R)$ containing $d(n,R)$ are determined and their derivations are given. In case 2 is not a unit partial results are given.
Classification :
13C10, 17B40, 17B45
Keywords: the general linear Lie algebra; derivations of Lie algebras; commutative rings
Keywords: the general linear Lie algebra; derivations of Lie algebras; commutative rings
@article{ARM_2008__44_3_a0,
author = {Wang, Dengyin and Wang, Xian},
title = {Derivations of the subalgebras intermediate the general linear {Lie} algebra and the diagonal subalgebra over commutative rings},
journal = {Archivum mathematicum},
pages = {173--183},
publisher = {mathdoc},
volume = {44},
number = {3},
year = {2008},
mrnumber = {2462972},
zbl = {1212.13003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_3_a0/}
}
TY - JOUR AU - Wang, Dengyin AU - Wang, Xian TI - Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings JO - Archivum mathematicum PY - 2008 SP - 173 EP - 183 VL - 44 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2008__44_3_a0/ LA - en ID - ARM_2008__44_3_a0 ER -
%0 Journal Article %A Wang, Dengyin %A Wang, Xian %T Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings %J Archivum mathematicum %D 2008 %P 173-183 %V 44 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/ARM_2008__44_3_a0/ %G en %F ARM_2008__44_3_a0
Wang, Dengyin; Wang, Xian. Derivations of the subalgebras intermediate the general linear Lie algebra and the diagonal subalgebra over commutative rings. Archivum mathematicum, Tome 44 (2008) no. 3, pp. 173-183. http://geodesic.mathdoc.fr/item/ARM_2008__44_3_a0/