Invariance of $g$-natural metrics on linear frame bundles
Archivum mathematicum, Tome 44 (2008) no. 2, pp. 139-147.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we prove that each $g$-natural metric on a linear frame bundle $LM$ over a Riemannian manifold $(M, g)$ is invariant with respect to a lifted map of a (local) isometry of the base manifold. Then we define $g$-natural metrics on the orthonormal frame bundle $OM$ and we prove the same invariance result as above for $OM$. Hence we see that, over a space $(M, g)$ of constant sectional curvature, the bundle $OM$ with an arbitrary $g$-natural metric $\tilde{G}$ is locally homogeneous.
Classification : 53C07, 53C20, 53C21, 53C40
Keywords: Riemannian manifold; linear frame bundle; orthonormal frame bundle; $g$-natural metrics; homogeneity
@article{ARM_2008__44_2_a6,
     author = {Kowalski, Old\v{r}ich and Sekizawa, Masami},
     title = {Invariance of $g$-natural metrics on linear frame bundles},
     journal = {Archivum mathematicum},
     pages = {139--147},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {2008},
     mrnumber = {2432851},
     zbl = {1212.53042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_2_a6/}
}
TY  - JOUR
AU  - Kowalski, Oldřich
AU  - Sekizawa, Masami
TI  - Invariance of $g$-natural metrics on linear frame bundles
JO  - Archivum mathematicum
PY  - 2008
SP  - 139
EP  - 147
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2008__44_2_a6/
LA  - en
ID  - ARM_2008__44_2_a6
ER  - 
%0 Journal Article
%A Kowalski, Oldřich
%A Sekizawa, Masami
%T Invariance of $g$-natural metrics on linear frame bundles
%J Archivum mathematicum
%D 2008
%P 139-147
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2008__44_2_a6/
%G en
%F ARM_2008__44_2_a6
Kowalski, Oldřich; Sekizawa, Masami. Invariance of $g$-natural metrics on linear frame bundles. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 139-147. http://geodesic.mathdoc.fr/item/ARM_2008__44_2_a6/