Conditional oscillation of half-linear differential equations with periodic coefficients
Archivum mathematicum, Tome 44 (2008) no. 2, pp. 119-131
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that the half-linear differential equation
\[ \big [r(t)\Phi (x^{\prime })\big ]^{\prime } + \frac{s(t)}{t^p} \Phi (x) = 0 \ast \]
with $\alpha $-periodic positive functions $r, s$ is conditionally oscillatory, i.e., there exists a constant $K>0$ such that () with $\frac{\gamma s(t)}{t^p}$ instead of $\frac{s(t)}{t^p}$ is oscillatory for $\gamma > K$ and nonoscillatory for $\gamma K$.
Classification :
34C10
Keywords: oscillation theory; conditional oscillation; half-linear differential equations
Keywords: oscillation theory; conditional oscillation; half-linear differential equations
@article{ARM_2008__44_2_a4,
author = {Hasil, Petr},
title = {Conditional oscillation of half-linear differential equations with periodic coefficients},
journal = {Archivum mathematicum},
pages = {119--131},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2008},
mrnumber = {2432849},
zbl = {1212.34110},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_2_a4/}
}
Hasil, Petr. Conditional oscillation of half-linear differential equations with periodic coefficients. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 119-131. http://geodesic.mathdoc.fr/item/ARM_2008__44_2_a4/