Canonical 1-forms on higher order adapted frame bundles
Archivum mathematicum, Tome 44 (2008) no. 2, pp. 115-118
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $(M,\mathcal{F})$ be a foliated $m+n$-dimensional manifold $M$ with $n$-dimensional foliation $\mathcal{F}$. Let $V$ be a finite dimensional vector space over $\mathbf{R}$. We describe all canonical (${\mathcal{F}}\mbox {\it ol}_{m,n}$-invariant) $V$-valued $1$-forms $\Theta \colon TP^r(M,{\mathcal{F}}) \rightarrow V$ on the $r$-th order adapted frame bundle $P^r(M,\mathcal{F})$ of $(M,\mathcal{F})$.
Classification :
58A20, 58A32
Keywords: foliated manifold; infinitesimal automorphism; higher order adapted frame bundle; canonical $1$-form
Keywords: foliated manifold; infinitesimal automorphism; higher order adapted frame bundle; canonical $1$-form
@article{ARM_2008__44_2_a3,
author = {Kurek, Jan and Mikulski, W{\l}odzimierz M.},
title = {Canonical 1-forms on higher order adapted frame bundles},
journal = {Archivum mathematicum},
pages = {115--118},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {2008},
mrnumber = {2432848},
zbl = {1212.58002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_2_a3/}
}
Kurek, Jan; Mikulski, Włodzimierz M. Canonical 1-forms on higher order adapted frame bundles. Archivum mathematicum, Tome 44 (2008) no. 2, pp. 115-118. http://geodesic.mathdoc.fr/item/ARM_2008__44_2_a3/