On Deszcz symmetries of Wintgen ideal submanifolds
Archivum mathematicum, Tome 44 (2008) no. 1, pp. 57-67.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It was conjectured in [26] that, for all submanifolds $M^n$ of all real space forms $\tilde{M}^{n+m}(c)$, the Wintgen inequality $\rho \le H^2 - \rho ^\perp + c$ is valid at all points of $M$, whereby $\rho $ is the normalised scalar curvature of the Riemannian manifold $M$ and $H^2$, respectively $\rho ^\perp $, are the squared mean curvature and the normalised scalar normal curvature of the submanifold $M$ in the ambient space $\tilde{M}$, and this conjecture was shown there to be true whenever codimension $m = 2$. For a given Riemannian manifold $M$, this inequality can be interpreted as follows: for all possible isometric immersions of $M^n$ in space forms $\tilde{M}^{n+m}(c)$, the value of the intrinsic scalar curvature $\rho $ of $M$ puts a lower bound to all possible values of the extrinsic curvature $H^2 - \rho ^\perp + c$ that $M$ in any case can not avoid to “undergo” as a submanifold of $\tilde{M}$. And, from this point of view, then $M$ is called a Wintgen ideal submanifold when it actually is able to achieve a realisation in $\tilde{M}$ such that this extrinsic curvature indeed everywhere assumes its theoretically smallest possible value as given by its normalised scalar curvature. For codimension $m = 2$ and dimension $n > 3$, we will show that the submanifolds $M$ which realise such minimal extrinsic curvatures in $\tilde{M}$ do intrinsically enjoy some curvature symmetries in the sense of Deszcz of their Riemann-Christoffel curvature tensor, of their Ricci curvature tensor and of their conformal curvature tensor of Weyl, which properties will be described mainly following [20].
Classification : 53A10, 53A55, 53B20, 53B25, 53B35, 53C42
Keywords: submanifolds; Wintgen inequality; ideal submanifolds; Deszcz symmetries
@article{ARM_2008__44_1_a6,
     author = {Petrovi\'c-Torga\v{s}ev, Miroslava and Verstraelen, Leopold},
     title = {On {Deszcz} symmetries {of~Wintgen~ideal~submanifolds}},
     journal = {Archivum mathematicum},
     pages = {57--67},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2008},
     mrnumber = {2431231},
     zbl = {1212.53028},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a6/}
}
TY  - JOUR
AU  - Petrović-Torgašev, Miroslava
AU  - Verstraelen, Leopold
TI  - On Deszcz symmetries of Wintgen ideal submanifolds
JO  - Archivum mathematicum
PY  - 2008
SP  - 57
EP  - 67
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a6/
LA  - en
ID  - ARM_2008__44_1_a6
ER  - 
%0 Journal Article
%A Petrović-Torgašev, Miroslava
%A Verstraelen, Leopold
%T On Deszcz symmetries of Wintgen ideal submanifolds
%J Archivum mathematicum
%D 2008
%P 57-67
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a6/
%G en
%F ARM_2008__44_1_a6
Petrović-Torgašev, Miroslava; Verstraelen, Leopold. On Deszcz symmetries of Wintgen ideal submanifolds. Archivum mathematicum, Tome 44 (2008) no. 1, pp. 57-67. http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a6/