Notes on countable extensions of $p^{\omega +n}$-projectives
Archivum mathematicum, Tome 44 (2008) no. 1, pp. 37-40.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We prove that if $G$ is an Abelian $p$-group of length not exceeding $\omega $ and $H$ is its $p^{\omega +n}$-projective subgroup for $n\in {\mathbb{N}} \cup \lbrace 0\rbrace $ such that $G/H$ is countable, then $G$ is also $p^{\omega +n}$-projective. This enlarges results of ours in (Arch. Math. (Brno), 2005, 2006 and 2007) as well as a classical result due to Wallace (J. Algebra, 1971).
Classification : 20K10, 20K25, 20K27, 20K35, 20K40
Keywords: abelian groups; countable factor-groups; $p^{\omega +n}$-projective groups
@article{ARM_2008__44_1_a4,
     author = {Danchev, Peter},
     title = {Notes on countable extensions of~$p^{\omega +n}$-projectives},
     journal = {Archivum mathematicum},
     pages = {37--40},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2008},
     mrnumber = {2431229},
     zbl = {1203.20046},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a4/}
}
TY  - JOUR
AU  - Danchev, Peter
TI  - Notes on countable extensions of $p^{\omega +n}$-projectives
JO  - Archivum mathematicum
PY  - 2008
SP  - 37
EP  - 40
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a4/
LA  - en
ID  - ARM_2008__44_1_a4
ER  - 
%0 Journal Article
%A Danchev, Peter
%T Notes on countable extensions of $p^{\omega +n}$-projectives
%J Archivum mathematicum
%D 2008
%P 37-40
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a4/
%G en
%F ARM_2008__44_1_a4
Danchev, Peter. Notes on countable extensions of $p^{\omega +n}$-projectives. Archivum mathematicum, Tome 44 (2008) no. 1, pp. 37-40. http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a4/