The jet prolongations of $2$-fibred manifolds and the flow operator
Archivum mathematicum, Tome 44 (2008) no. 1, pp. 17-21
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $r$, $s$, $m$, $n$, $q$ be natural numbers such that $s\ge r$. We prove that any $2$-${\mathcal{F}}\mathbb{M}_{m,n,q}$-natural operator $A\colon T_{\operatorname{2-proj}}\rightsquigarrow TJ^{(s,r)}$ transforming $2$-projectable vector fields $V$ on $(m,n,q)$-dimensional $2$-fibred manifolds $Y\rightarrow X\rightarrow M$ into vector fields $A(V)$ on the $(s,r)$-jet prolongation bundle $J^{(s,r)}Y$ is a constant multiple of the flow operator $\mathcal{J}^{(s,r)}$.
Classification :
58A20
Keywords: $(s, r)$-jet; bundle functor; natural operator; flow operator; $2$-fibred manifold; $2$-projectable vector field
Keywords: $(s, r)$-jet; bundle functor; natural operator; flow operator; $2$-fibred manifold; $2$-projectable vector field
@article{ARM_2008__44_1_a2,
author = {Mikulski, W{\l}odzimierz M.},
title = {The jet prolongations of $2$-fibred manifolds and~the~flow~operator},
journal = {Archivum mathematicum},
pages = {17--21},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {2008},
mrnumber = {2431227},
zbl = {1212.58003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a2/}
}
Mikulski, Włodzimierz M. The jet prolongations of $2$-fibred manifolds and the flow operator. Archivum mathematicum, Tome 44 (2008) no. 1, pp. 17-21. http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a2/