The jet prolongations of $2$-fibred manifolds and the flow operator
Archivum mathematicum, Tome 44 (2008) no. 1, pp. 17-21.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $r$, $s$, $m$, $n$, $q$ be natural numbers such that $s\ge r$. We prove that any $2$-${\mathcal{F}}\mathbb{M}_{m,n,q}$-natural operator $A\colon T_{\operatorname{2-proj}}\rightsquigarrow TJ^{(s,r)}$ transforming $2$-projectable vector fields $V$ on $(m,n,q)$-dimensional $2$-fibred manifolds $Y\rightarrow X\rightarrow M$ into vector fields $A(V)$ on the $(s,r)$-jet prolongation bundle $J^{(s,r)}Y$ is a constant multiple of the flow operator $\mathcal{J}^{(s,r)}$.
Classification : 58A20
Keywords: $(s, r)$-jet; bundle functor; natural operator; flow operator; $2$-fibred manifold; $2$-projectable vector field
@article{ARM_2008__44_1_a2,
     author = {Mikulski, W{\l}odzimierz M.},
     title = {The jet prolongations of $2$-fibred manifolds and~the~flow~operator},
     journal = {Archivum mathematicum},
     pages = {17--21},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {2008},
     mrnumber = {2431227},
     zbl = {1212.58003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a2/}
}
TY  - JOUR
AU  - Mikulski, Włodzimierz M.
TI  - The jet prolongations of $2$-fibred manifolds and the flow operator
JO  - Archivum mathematicum
PY  - 2008
SP  - 17
EP  - 21
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a2/
LA  - en
ID  - ARM_2008__44_1_a2
ER  - 
%0 Journal Article
%A Mikulski, Włodzimierz M.
%T The jet prolongations of $2$-fibred manifolds and the flow operator
%J Archivum mathematicum
%D 2008
%P 17-21
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a2/
%G en
%F ARM_2008__44_1_a2
Mikulski, Włodzimierz M. The jet prolongations of $2$-fibred manifolds and the flow operator. Archivum mathematicum, Tome 44 (2008) no. 1, pp. 17-21. http://geodesic.mathdoc.fr/item/ARM_2008__44_1_a2/