On local geometry of finite multitype hypersurfaces
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 459-466

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper studies local geometry of hypersurfaces of finite multitype. Catlin’s definition of multitype is applied to a general smooth hypersurface in $\mathbb C^{n+1}$. We prove biholomorphic equivalence of models in dimension three and describe all biholomorphisms between such models. A finite constructive algorithm for computing multitype is described. Analogous results for decoupled hypersurfaces are given.
Classification : 32V15, 32V35, 32V40, 32Vxx
Keywords: finite type; Catlin’s multitype; model hypersurfaces; biholomorphic equivalence; decoupled domains
@article{ARM_2007__43_5_a9,
     author = {Kol\'a\v{r}, Martin},
     title = {On local geometry of finite multitype hypersurfaces},
     journal = {Archivum mathematicum},
     pages = {459--466},
     publisher = {mathdoc},
     volume = {43},
     number = {5},
     year = {2007},
     mrnumber = {2381788},
     zbl = {1199.32042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/}
}
TY  - JOUR
AU  - Kolář, Martin
TI  - On local geometry of finite multitype hypersurfaces
JO  - Archivum mathematicum
PY  - 2007
SP  - 459
EP  - 466
VL  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/
LA  - en
ID  - ARM_2007__43_5_a9
ER  - 
%0 Journal Article
%A Kolář, Martin
%T On local geometry of finite multitype hypersurfaces
%J Archivum mathematicum
%D 2007
%P 459-466
%V 43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/
%G en
%F ARM_2007__43_5_a9
Kolář, Martin. On local geometry of finite multitype hypersurfaces. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 459-466. http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/