On local geometry of finite multitype hypersurfaces
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 459-466.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper studies local geometry of hypersurfaces of finite multitype. Catlin’s definition of multitype is applied to a general smooth hypersurface in $\mathbb C^{n+1}$. We prove biholomorphic equivalence of models in dimension three and describe all biholomorphisms between such models. A finite constructive algorithm for computing multitype is described. Analogous results for decoupled hypersurfaces are given.
Classification : 32V15, 32V35, 32V40, 32Vxx
Keywords: finite type; Catlin’s multitype; model hypersurfaces; biholomorphic equivalence; decoupled domains
@article{ARM_2007__43_5_a9,
     author = {Kol\'a\v{r}, Martin},
     title = {On local geometry of finite multitype hypersurfaces},
     journal = {Archivum mathematicum},
     pages = {459--466},
     publisher = {mathdoc},
     volume = {43},
     number = {5},
     year = {2007},
     mrnumber = {2381788},
     zbl = {1199.32042},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/}
}
TY  - JOUR
AU  - Kolář, Martin
TI  - On local geometry of finite multitype hypersurfaces
JO  - Archivum mathematicum
PY  - 2007
SP  - 459
EP  - 466
VL  - 43
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/
LA  - en
ID  - ARM_2007__43_5_a9
ER  - 
%0 Journal Article
%A Kolář, Martin
%T On local geometry of finite multitype hypersurfaces
%J Archivum mathematicum
%D 2007
%P 459-466
%V 43
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/
%G en
%F ARM_2007__43_5_a9
Kolář, Martin. On local geometry of finite multitype hypersurfaces. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 459-466. http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/