On local geometry of finite multitype hypersurfaces
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 459-466
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
This paper studies local geometry of hypersurfaces of finite multitype. Catlin’s definition of multitype is applied to a general smooth hypersurface in $\mathbb C^{n+1}$. We prove biholomorphic equivalence of models in dimension three and describe all biholomorphisms between such models. A finite constructive algorithm for computing multitype is described. Analogous results for decoupled hypersurfaces are given.
Classification :
32V15, 32V35, 32V40, 32Vxx
Keywords: finite type; Catlin’s multitype; model hypersurfaces; biholomorphic equivalence; decoupled domains
Keywords: finite type; Catlin’s multitype; model hypersurfaces; biholomorphic equivalence; decoupled domains
@article{ARM_2007__43_5_a9,
author = {Kol\'a\v{r}, Martin},
title = {On local geometry of finite multitype hypersurfaces},
journal = {Archivum mathematicum},
pages = {459--466},
publisher = {mathdoc},
volume = {43},
number = {5},
year = {2007},
mrnumber = {2381788},
zbl = {1199.32042},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/}
}
Kolář, Martin. On local geometry of finite multitype hypersurfaces. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 459-466. http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a9/