Universal spaces for manifolds equipped with an integral closed $k$-form
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 443-457
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this note we prove that any integral closed $k$-form $\phi ^k$, $k\ge 3$, on a m-dimensional manifold $M^m$, $m \ge k$, is the restriction of a universal closed $k$-form $h^k$ on a universal manifold $U^{d(m,k)}$ as a result of an embedding of $M^m$ to $U^{d(m,k)}$.
@article{ARM_2007__43_5_a8,
author = {L\^e, H\^ong-V\^an},
title = {Universal spaces for manifolds equipped with an integral closed $k$-form},
journal = {Archivum mathematicum},
pages = {443--457},
publisher = {mathdoc},
volume = {43},
number = {5},
year = {2007},
mrnumber = {2381787},
zbl = {1199.53077},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a8/}
}
Lê, Hông-Vân. Universal spaces for manifolds equipped with an integral closed $k$-form. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 443-457. http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a8/