Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds
Archivum mathematicum, Tome 43 (2007) no. 5, pp. 467-484
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Consider a flat symplectic manifold $(M^{2l},\omega )$, $l\ge 2$, admitting a metaplectic structure. We prove that the symplectic twistor operator maps the eigenvectors of the symplectic Dirac operator, that are not symplectic Killing spinors, to the eigenvectors of the symplectic Rarita-Schwinger operator. If $\lambda $ is an eigenvalue of the symplectic Dirac operator such that $-\imath l \lambda $ is not a symplectic Killing number, then $\frac{l-1}{l}\lambda $ is an eigenvalue of the symplectic Rarita-Schwinger operator.
Classification :
35N10, 53D05, 58J05, 58J50, 58Jxx
Keywords: symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors
Keywords: symplectic Dirac operator; symplectic Rarita-Schwinger operator; Kostant symplectic spinors
@article{ARM_2007__43_5_a10,
author = {Kr\'ysl, Svatopluk},
title = {Relation of the spectra of symplectic {Rarita-Schwinger} and {Dirac} operators on flat symplectic manifolds},
journal = {Archivum mathematicum},
pages = {467--484},
publisher = {mathdoc},
volume = {43},
number = {5},
year = {2007},
mrnumber = {2381789},
zbl = {1199.58011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a10/}
}
TY - JOUR AU - Krýsl, Svatopluk TI - Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds JO - Archivum mathematicum PY - 2007 SP - 467 EP - 484 VL - 43 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a10/ LA - en ID - ARM_2007__43_5_a10 ER -
Krýsl, Svatopluk. Relation of the spectra of symplectic Rarita-Schwinger and Dirac operators on flat symplectic manifolds. Archivum mathematicum, Tome 43 (2007) no. 5, pp. 467-484. http://geodesic.mathdoc.fr/item/ARM_2007__43_5_a10/