Ideal amenability of module extensions of Banach algebras
Archivum mathematicum, Tome 43 (2007) no. 3, pp. 177-184.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\cal A$ be a Banach algebra. $\cal A$ is called ideally amenable if for every closed ideal $I$ of $\cal A$, the first cohomology group of $\cal A$ with coefficients in $I^*$ is zero, i.e. $H^1({\cal A}, I^*)=\lbrace 0\rbrace $. Some examples show that ideal amenability is different from weak amenability and amenability. Also for $n\in {N}$, $\cal A$ is called $n$-ideally amenable if for every closed ideal $I$ of $\cal A$, $H^1({\cal A},I^{(n)})=\lbrace 0\rbrace $. In this paper we find the necessary and sufficient conditions for a module extension Banach algebra to be 2-ideally amenable.
Classification : 46Hxx
Keywords: ideally amenable; Banach algebra; derivation
@article{ARM_2007__43_3_a3,
     author = {Gordji, Eshaghi M. and Habibian, F. and Hayati, B.},
     title = {Ideal amenability of module extensions of {Banach} algebras},
     journal = {Archivum mathematicum},
     pages = {177--184},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2007},
     mrnumber = {2354806},
     zbl = {1164.46020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_3_a3/}
}
TY  - JOUR
AU  - Gordji, Eshaghi M.
AU  - Habibian, F.
AU  - Hayati, B.
TI  - Ideal amenability of module extensions of Banach algebras
JO  - Archivum mathematicum
PY  - 2007
SP  - 177
EP  - 184
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2007__43_3_a3/
LA  - en
ID  - ARM_2007__43_3_a3
ER  - 
%0 Journal Article
%A Gordji, Eshaghi M.
%A Habibian, F.
%A Hayati, B.
%T Ideal amenability of module extensions of Banach algebras
%J Archivum mathematicum
%D 2007
%P 177-184
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2007__43_3_a3/
%G en
%F ARM_2007__43_3_a3
Gordji, Eshaghi M.; Habibian, F.; Hayati, B. Ideal amenability of module extensions of Banach algebras. Archivum mathematicum, Tome 43 (2007) no. 3, pp. 177-184. http://geodesic.mathdoc.fr/item/ARM_2007__43_3_a3/