On locally Lipschitz locally compact transformation groups of manifolds
Archivum mathematicum, Tome 43 (2007) no. 3, pp. 159-162.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we show that a “locally Lipschitz” locally compact transformation group acting continuously and effectively on a connected paracompact locally Euclidean topological manifold is a Lie group. This is a contribution to the proof of the Hilbert-Smith conjecture. It generalizes the classical Bochner-Montgomery-Kuranishi Theorem[1, 9] and also the Repovš-Ščepin Theorem [17] which holds only for Riemannian manifolds.
Classification : 57S05
Keywords: locally Lipschitz transformation group; Hilbert-Smith conjecture
@article{ARM_2007__43_3_a1,
     author = {George Michael, A. A.},
     title = {On locally {Lipschitz} locally compact transformation groups of manifolds},
     journal = {Archivum mathematicum},
     pages = {159--162},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2007},
     mrnumber = {2354804},
     zbl = {1164.57014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_3_a1/}
}
TY  - JOUR
AU  - George Michael, A. A.
TI  - On locally Lipschitz locally compact transformation groups of manifolds
JO  - Archivum mathematicum
PY  - 2007
SP  - 159
EP  - 162
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2007__43_3_a1/
LA  - en
ID  - ARM_2007__43_3_a1
ER  - 
%0 Journal Article
%A George Michael, A. A.
%T On locally Lipschitz locally compact transformation groups of manifolds
%J Archivum mathematicum
%D 2007
%P 159-162
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2007__43_3_a1/
%G en
%F ARM_2007__43_3_a1
George Michael, A. A. On locally Lipschitz locally compact transformation groups of manifolds. Archivum mathematicum, Tome 43 (2007) no. 3, pp. 159-162. http://geodesic.mathdoc.fr/item/ARM_2007__43_3_a1/