On countable extensions of primary abelian groups
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 61-66.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

It is proved that if $A$ is an abelian $p$-group with a pure subgroup $G$ so that $A/G$ is at most countable and $G$ is either $p^{\omega +n}$-totally projective or $p^{\omega +n}$-summable, then $A$ is either $p^{\omega +n}$-totally projective or $p^{\omega +n}$-summable as well. Moreover, if in addition $G$ is nice in $A$, then $G$ being either strongly $p^{\omega +n}$-totally projective or strongly $p^{\omega +n}$-summable implies that so is $A$. This generalizes a classical result of Wallace (J. Algebra, 1971) for totally projective $p$-groups as well as continues our recent investigations in (Arch. Math. (Brno), 2005 and 2006). Some other related results are also established.
Classification : 20K10, 20K15
Keywords: countable quotient groups; $\omega $-elongations; $p^{\omega +n}$-totally projective groups; $p^{\omega +n}$-summable groups
@article{ARM_2007__43_1_a5,
     author = {Danchev, P. V.},
     title = {On countable extensions of primary abelian groups},
     journal = {Archivum mathematicum},
     pages = {61--66},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2007},
     mrnumber = {2310125},
     zbl = {1156.20044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a5/}
}
TY  - JOUR
AU  - Danchev, P. V.
TI  - On countable extensions of primary abelian groups
JO  - Archivum mathematicum
PY  - 2007
SP  - 61
EP  - 66
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a5/
LA  - en
ID  - ARM_2007__43_1_a5
ER  - 
%0 Journal Article
%A Danchev, P. V.
%T On countable extensions of primary abelian groups
%J Archivum mathematicum
%D 2007
%P 61-66
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a5/
%G en
%F ARM_2007__43_1_a5
Danchev, P. V. On countable extensions of primary abelian groups. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 61-66. http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a5/