On $S$-Noetherian rings
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 55-60
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $R$ be a commutative ring and $S\subseteq R$ a given multiplicative set. Let $(M,\le )$ be a strictly ordered monoid satisfying the condition that $0\le m$ for every $m\in M$. Then it is shown, under some additional conditions, that the generalized power series ring $[[R^{M,\le }]]$ is $S$-Noetherian if and only if $R$ is $S$-Noetherian and $M$ is finitely generated.
Classification :
16P40
Keywords: $S$-Noetherian ring; generalized power series ring; anti-Archimedean multiplicative set; $S$-finite ideal
Keywords: $S$-Noetherian ring; generalized power series ring; anti-Archimedean multiplicative set; $S$-finite ideal
@article{ARM_2007__43_1_a4,
author = {Liu, Zhongkui},
title = {On $S${-Noetherian} rings},
journal = {Archivum mathematicum},
pages = {55--60},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2007},
mrnumber = {2310124},
zbl = {1160.16307},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a4/}
}
Liu, Zhongkui. On $S$-Noetherian rings. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 55-60. http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a4/