On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 39-53
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The higher-order nonlinear ordinary differential equation \[ x^{(n)} + \lambda p(t)f(x) = 0\,, \quad t \ge a\,, \] is considered and the problem of counting the number of zeros of bounded nonoscillatory solutions $x(t;\lambda )$ satisfying $\lim _{t\rightarrow \infty }x(t;\lambda ) = 1$ is studied. The results can be applied to a singular eigenvalue problem.
Classification :
34B40, 34C10
Keywords: nonoscillatory solutions; zeros of solutions; singular eigenvalue problems
Keywords: nonoscillatory solutions; zeros of solutions; singular eigenvalue problems
@article{ARM_2007__43_1_a3,
author = {Naito, Manabu},
title = {On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations},
journal = {Archivum mathematicum},
pages = {39--53},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2007},
mrnumber = {2310123},
zbl = {1164.34014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a3/}
}
TY - JOUR AU - Naito, Manabu TI - On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations JO - Archivum mathematicum PY - 2007 SP - 39 EP - 53 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a3/ LA - en ID - ARM_2007__43_1_a3 ER -
%0 Journal Article %A Naito, Manabu %T On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations %J Archivum mathematicum %D 2007 %P 39-53 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a3/ %G en %F ARM_2007__43_1_a3
Naito, Manabu. On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 39-53. http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a3/