On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 39-53.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The higher-order nonlinear ordinary differential equation \[ x^{(n)} + \lambda p(t)f(x) = 0\,, \quad t \ge a\,, \] is considered and the problem of counting the number of zeros of bounded nonoscillatory solutions $x(t;\lambda )$ satisfying $\lim _{t\rightarrow \infty }x(t;\lambda ) = 1$ is studied. The results can be applied to a singular eigenvalue problem.
Classification : 34B40, 34C10
Keywords: nonoscillatory solutions; zeros of solutions; singular eigenvalue problems
@article{ARM_2007__43_1_a3,
     author = {Naito, Manabu},
     title = {On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations},
     journal = {Archivum mathematicum},
     pages = {39--53},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2007},
     mrnumber = {2310123},
     zbl = {1164.34014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a3/}
}
TY  - JOUR
AU  - Naito, Manabu
TI  - On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations
JO  - Archivum mathematicum
PY  - 2007
SP  - 39
EP  - 53
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a3/
LA  - en
ID  - ARM_2007__43_1_a3
ER  - 
%0 Journal Article
%A Naito, Manabu
%T On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations
%J Archivum mathematicum
%D 2007
%P 39-53
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a3/
%G en
%F ARM_2007__43_1_a3
Naito, Manabu. On the number of zeros of bounded nonoscillatory solutions to higher-order nonlinear ordinary differential equations. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 39-53. http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a3/