A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 31-37.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\omega (G)$ denote the set of element orders of a finite group $G$. If $H$ is a finite non-abelian simple group and $\omega (H)=\omega (G)$ implies $G$ contains a unique non-abelian composition factor isomorphic to $H$, then $G$ is called quasirecognizable by the set of its element orders. In this paper we will prove that the group $PSL_{4}(5)$ is quasirecognizable.
Classification : 20D06, 20D60
Keywords: projective special linear group; element order
@article{ARM_2007__43_1_a2,
     author = {Darafsheh, Mohammad Reza and Farjami, Yaghoub and Sadrudini, Abdollah},
     title = {A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders},
     journal = {Archivum mathematicum},
     pages = {31--37},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2007},
     mrnumber = {2310122},
     zbl = {1156.20013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a2/}
}
TY  - JOUR
AU  - Darafsheh, Mohammad Reza
AU  - Farjami, Yaghoub
AU  - Sadrudini, Abdollah
TI  - A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders
JO  - Archivum mathematicum
PY  - 2007
SP  - 31
EP  - 37
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a2/
LA  - en
ID  - ARM_2007__43_1_a2
ER  - 
%0 Journal Article
%A Darafsheh, Mohammad Reza
%A Farjami, Yaghoub
%A Sadrudini, Abdollah
%T A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders
%J Archivum mathematicum
%D 2007
%P 31-37
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a2/
%G en
%F ARM_2007__43_1_a2
Darafsheh, Mohammad Reza; Farjami, Yaghoub; Sadrudini, Abdollah. A characterization property of the simple group ${\rm PSL}\sb 4(5)$ by the set of its element orders. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 31-37. http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a2/