Calculations in new sequence spaces
Archivum mathematicum, Tome 43 (2007) no. 1, pp. 1-18.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we define new sequence spaces using the concepts of strong summability and boundedness of index $p>0$ of $r$-th order difference sequences. We establish sufficient conditions for these spaces to reduce to certain spaces of null and bounded sequences.
Classification : 40H05, 46A45
Keywords: infinite linear system; operator of first order difference; Banach algebra with identity; BK space
@article{ARM_2007__43_1_a0,
     author = {de Malafosse, Bruno},
     title = {Calculations in new sequence spaces},
     journal = {Archivum mathematicum},
     pages = {1--18},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2007},
     mrnumber = {2310120},
     zbl = {1164.40013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a0/}
}
TY  - JOUR
AU  - de Malafosse, Bruno
TI  - Calculations in new sequence spaces
JO  - Archivum mathematicum
PY  - 2007
SP  - 1
EP  - 18
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a0/
LA  - en
ID  - ARM_2007__43_1_a0
ER  - 
%0 Journal Article
%A de Malafosse, Bruno
%T Calculations in new sequence spaces
%J Archivum mathematicum
%D 2007
%P 1-18
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a0/
%G en
%F ARM_2007__43_1_a0
de Malafosse, Bruno. Calculations in new sequence spaces. Archivum mathematicum, Tome 43 (2007) no. 1, pp. 1-18. http://geodesic.mathdoc.fr/item/ARM_2007__43_1_a0/