Generalized Verma module homomorphisms in singular character
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 229-240.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we study invariant differential operators on manifolds with a given parabolic structure. The model for the parabolic geometry is the quotient of the orthogonal group by a maximal parabolic subgroup corresponding to crossing of the $k$-th simple root of the Dynkin diagram. In particular, invariant differential operators discussed in the paper correspond (in a flat model) to the Dirac operator in several variables.
Classification : 22Exx, 58Jxx
@article{ARM_2006__42_5_a9,
     author = {Franek, Peter},
     title = {Generalized {Verma} module homomorphisms in singular character},
     journal = {Archivum mathematicum},
     pages = {229--240},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2006},
     mrnumber = {2322409},
     zbl = {1164.22310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a9/}
}
TY  - JOUR
AU  - Franek, Peter
TI  - Generalized Verma module homomorphisms in singular character
JO  - Archivum mathematicum
PY  - 2006
SP  - 229
EP  - 240
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a9/
LA  - en
ID  - ARM_2006__42_5_a9
ER  - 
%0 Journal Article
%A Franek, Peter
%T Generalized Verma module homomorphisms in singular character
%J Archivum mathematicum
%D 2006
%P 229-240
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a9/
%G en
%F ARM_2006__42_5_a9
Franek, Peter. Generalized Verma module homomorphisms in singular character. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 229-240. http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a9/