Geodesic graphs on special 7-dimensional g.o. manifolds
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 213-227.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In ( Dušek, Z., Kowalski, O. and Nikčević, S. Ž., New examples of Riemannian g.o. manifolds in dimension 7, Differential Geom. Appl. 21 (2004), 65–78.), the present authors and S. Nikčević constructed the 2-parameter family of invariant Riemannian metrics on the homogeneous manifolds $M=[{\rm SO}(5)\times {\rm SO}(2)]/{\rm U}(2)$ and $M=[{\rm SO}(4,1)\times {\rm SO}(2)]/{\rm U}(2)$. They proved that, for the open dense subset of this family, the corresponding Riemannian manifolds are g.o. manifolds which are not naturally reductive. Now we are going to investigate the remaining metrics (in the compact case).
Classification : 53C22, 53C30
Keywords: naturally reductive spaces; Riemannian g.o. spaces; geodesic graph
@article{ARM_2006__42_5_a8,
     author = {Du\v{s}ek, Zden\v{e}k and Kowalski, Old\v{r}ich},
     title = {Geodesic graphs on special 7-dimensional g.o. manifolds},
     journal = {Archivum mathematicum},
     pages = {213--227},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2006},
     mrnumber = {2322408},
     zbl = {1164.53361},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a8/}
}
TY  - JOUR
AU  - Dušek, Zdeněk
AU  - Kowalski, Oldřich
TI  - Geodesic graphs on special 7-dimensional g.o. manifolds
JO  - Archivum mathematicum
PY  - 2006
SP  - 213
EP  - 227
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a8/
LA  - en
ID  - ARM_2006__42_5_a8
ER  - 
%0 Journal Article
%A Dušek, Zdeněk
%A Kowalski, Oldřich
%T Geodesic graphs on special 7-dimensional g.o. manifolds
%J Archivum mathematicum
%D 2006
%P 213-227
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a8/
%G en
%F ARM_2006__42_5_a8
Dušek, Zdeněk; Kowalski, Oldřich. Geodesic graphs on special 7-dimensional g.o. manifolds. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 213-227. http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a8/