On second order Hamiltonian systems
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 341-347.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The aim of the paper is to announce some recent results concerning Hamiltonian theory. The case of second order Euler–Lagrange form non-affine in the second derivatives is studied. Its related second order Hamiltonian systems and geometrical correspondence between solutions of Hamilton and Euler–Lagrange equations are found.
Classification : 37J05, 58E30, 70S05
Keywords: Euler–Lagrange equations; Hamiltonian systems; Hamilton extremals; Dedecker–Hamilton extremals; Hamilton equations; Lepagean equivalents
@article{ARM_2006__42_5_a20,
     author = {Smetanov\'a, Dana},
     title = {On second order {Hamiltonian} systems},
     journal = {Archivum mathematicum},
     pages = {341--347},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2006},
     mrnumber = {2322420},
     zbl = {1164.35304},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a20/}
}
TY  - JOUR
AU  - Smetanová, Dana
TI  - On second order Hamiltonian systems
JO  - Archivum mathematicum
PY  - 2006
SP  - 341
EP  - 347
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a20/
LA  - en
ID  - ARM_2006__42_5_a20
ER  - 
%0 Journal Article
%A Smetanová, Dana
%T On second order Hamiltonian systems
%J Archivum mathematicum
%D 2006
%P 341-347
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a20/
%G en
%F ARM_2006__42_5_a20
Smetanová, Dana. On second order Hamiltonian systems. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 341-347. http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a20/