Coincidence free pairs of maps
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 105-117.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper centers around two basic problems of topological coincidence theory. First, try to measure (with the help of Nielsen and minimum numbers) how far a given pair of maps is from being loose, i.e. from being homotopic to a pair of coincidence free maps. Secondly, describe the set of loose pairs of homotopy classes. We give a brief (and necessarily very incomplete) survey of some old and new advances concerning the first problem. Then we attack the second problem mainly in the setting of homotopy groups. This leads also to a very natural filtration of all homotopy sets. Explicit calculations are carried out for maps into spheres and projective spaces.
Classification : 55M20, 55Q52, 57R22
Keywords: coincidence; Nielsen number; minimum number; configuration space; projective space; filtration
@article{ARM_2006__42_5_a2,
     author = {Koschorke, Ulrich},
     title = {Coincidence free pairs of maps},
     journal = {Archivum mathematicum},
     pages = {105--117},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2006},
     mrnumber = {2322402},
     zbl = {1164.55300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a2/}
}
TY  - JOUR
AU  - Koschorke, Ulrich
TI  - Coincidence free pairs of maps
JO  - Archivum mathematicum
PY  - 2006
SP  - 105
EP  - 117
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a2/
LA  - en
ID  - ARM_2006__42_5_a2
ER  - 
%0 Journal Article
%A Koschorke, Ulrich
%T Coincidence free pairs of maps
%J Archivum mathematicum
%D 2006
%P 105-117
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a2/
%G en
%F ARM_2006__42_5_a2
Koschorke, Ulrich. Coincidence free pairs of maps. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 105-117. http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a2/