Split octonions and generic rank two distributions in dimension five
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 329-339
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In his famous five variables paper Elie Cartan showed that one can canonically associate to a generic rank 2 distribution on a 5 dimensional manifold a Cartan geometry modeled on the homogeneous space $\tilde{G}_2/P$, where $P$ is one of the maximal parabolic subgroups of the exceptional Lie group $\tilde{G}_2$. In this article, we use the algebra of split octonions to give an explicit global description of the distribution corresponding to the homogeneous model.
@article{ARM_2006__42_5_a19,
author = {Sagerschnig, Katja},
title = {Split octonions and generic rank two distributions in dimension five},
journal = {Archivum mathematicum},
pages = {329--339},
publisher = {mathdoc},
volume = {42},
number = {5},
year = {2006},
mrnumber = {2322419},
zbl = {1164.53362},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a19/}
}
Sagerschnig, Katja. Split octonions and generic rank two distributions in dimension five. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 329-339. http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a19/