A brief review of supersymmetric non-linear sigma models and generalized complex geometry
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 307-318.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma models in the Hamiltonian formulation.
Classification : 53C25, 53C80, 81T60
@article{ARM_2006__42_5_a17,
     author = {Lindstr\"om, Ulf},
     title = {A brief review of supersymmetric non-linear sigma models and generalized complex geometry},
     journal = {Archivum mathematicum},
     pages = {307--318},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2006},
     mrnumber = {2322417},
     zbl = {1164.53400},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a17/}
}
TY  - JOUR
AU  - Lindström, Ulf
TI  - A brief review of supersymmetric non-linear sigma models and generalized complex geometry
JO  - Archivum mathematicum
PY  - 2006
SP  - 307
EP  - 318
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a17/
LA  - en
ID  - ARM_2006__42_5_a17
ER  - 
%0 Journal Article
%A Lindström, Ulf
%T A brief review of supersymmetric non-linear sigma models and generalized complex geometry
%J Archivum mathematicum
%D 2006
%P 307-318
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a17/
%G en
%F ARM_2006__42_5_a17
Lindström, Ulf. A brief review of supersymmetric non-linear sigma models and generalized complex geometry. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 307-318. http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a17/