A gravitational effective action on a finite triangulation as a discrete model of continuous concepts
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 245-251
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We recall how the Gauss-Bonnet theorem can be interpreted as a finite dimensional index theorem. We describe the construction given in hep-th/0512293 of a function that can be interpreted as a gravitational effective action on a triangulation. The variation of this function under local rescalings of the edge lengths sharing a vertex is the Euler density, and we use it to illustrate how continuous concepts can have natural discrete analogs.
@article{ARM_2006__42_5_a11,
author = {Ko, Albert and Ro\v{c}ek, Martin},
title = {A gravitational effective action on a finite triangulation as a discrete model of continuous concepts},
journal = {Archivum mathematicum},
pages = {245--251},
publisher = {mathdoc},
volume = {42},
number = {5},
year = {2006},
mrnumber = {2322411},
zbl = {1164.83300},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a11/}
}
TY - JOUR AU - Ko, Albert AU - Roček, Martin TI - A gravitational effective action on a finite triangulation as a discrete model of continuous concepts JO - Archivum mathematicum PY - 2006 SP - 245 EP - 251 VL - 42 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a11/ LA - en ID - ARM_2006__42_5_a11 ER -
%0 Journal Article %A Ko, Albert %A Roček, Martin %T A gravitational effective action on a finite triangulation as a discrete model of continuous concepts %J Archivum mathematicum %D 2006 %P 245-251 %V 42 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a11/ %G en %F ARM_2006__42_5_a11
Ko, Albert; Roček, Martin. A gravitational effective action on a finite triangulation as a discrete model of continuous concepts. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 245-251. http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a11/