A gravitational effective action on a finite triangulation as a discrete model of continuous concepts
Archivum mathematicum, Tome 42 (2006) no. 5, pp. 245-251.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We recall how the Gauss-Bonnet theorem can be interpreted as a finite dimensional index theorem. We describe the construction given in hep-th/0512293 of a function that can be interpreted as a gravitational effective action on a triangulation. The variation of this function under local rescalings of the edge lengths sharing a vertex is the Euler density, and we use it to illustrate how continuous concepts can have natural discrete analogs.
Classification : 83C27, 83C80
@article{ARM_2006__42_5_a11,
     author = {Ko, Albert and Ro\v{c}ek, Martin},
     title = {A gravitational effective action on a finite triangulation as a discrete model of continuous concepts},
     journal = {Archivum mathematicum},
     pages = {245--251},
     publisher = {mathdoc},
     volume = {42},
     number = {5},
     year = {2006},
     mrnumber = {2322411},
     zbl = {1164.83300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a11/}
}
TY  - JOUR
AU  - Ko, Albert
AU  - Roček, Martin
TI  - A gravitational effective action on a finite triangulation as a discrete model of continuous concepts
JO  - Archivum mathematicum
PY  - 2006
SP  - 245
EP  - 251
VL  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a11/
LA  - en
ID  - ARM_2006__42_5_a11
ER  - 
%0 Journal Article
%A Ko, Albert
%A Roček, Martin
%T A gravitational effective action on a finite triangulation as a discrete model of continuous concepts
%J Archivum mathematicum
%D 2006
%P 245-251
%V 42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a11/
%G en
%F ARM_2006__42_5_a11
Ko, Albert; Roček, Martin. A gravitational effective action on a finite triangulation as a discrete model of continuous concepts. Archivum mathematicum, Tome 42 (2006) no. 5, pp. 245-251. http://geodesic.mathdoc.fr/item/ARM_2006__42_5_a11/