Natural weak factorization systems
Archivum mathematicum, Tome 42 (2006) no. 4, pp. 397-408.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In order to facilitate a natural choice for morphisms created by the (left or right) lifting property as used in the definition of weak factorization systems, the notion of natural weak factorization system in the category $\mathcal {K}$ is introduced, as a pair (comonad, monad) over $\mathcal {K}^{\bf 2}$. The link with existing notions in terms of morphism classes is given via the respective Eilenberg–Moore categories.
Classification : 18C15
@article{ARM_2006__42_4_a4,
     author = {Grandis, Marco and Tholen, Walter},
     title = {Natural weak factorization systems},
     journal = {Archivum mathematicum},
     pages = {397--408},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2006},
     mrnumber = {2283020},
     zbl = {1164.18300},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ARM_2006__42_4_a4/}
}
TY  - JOUR
AU  - Grandis, Marco
AU  - Tholen, Walter
TI  - Natural weak factorization systems
JO  - Archivum mathematicum
PY  - 2006
SP  - 397
EP  - 408
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ARM_2006__42_4_a4/
LA  - en
ID  - ARM_2006__42_4_a4
ER  - 
%0 Journal Article
%A Grandis, Marco
%A Tholen, Walter
%T Natural weak factorization systems
%J Archivum mathematicum
%D 2006
%P 397-408
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ARM_2006__42_4_a4/
%G en
%F ARM_2006__42_4_a4
Grandis, Marco; Tholen, Walter. Natural weak factorization systems. Archivum mathematicum, Tome 42 (2006) no. 4, pp. 397-408. http://geodesic.mathdoc.fr/item/ARM_2006__42_4_a4/